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Atoms in circularly polarised fields: the dilatation-analytic 
approach 
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Fom-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, 
The Netherlands 

Received 11 January 1983, in final form 25 April 1983 

Abstract. The time-evolution operator associated with an atom in  a circularly polarised 
radiation field can be factorised as U ( f )  = exp[-iwJ,t] exp[-iHf], where J ,  is the com- 
ponent of the total angular momentum orthogonal to the two field components and H 
can explictly be given in terms of the atomic Hamiltonian. We establish, for a one-electron 
model, the self-adjointness of H and in addition we develop a complex dilatation theory 
for this operator. The purpose of this approach is to obtain an analytic continuation 
theory for multiphoton processes so that the imaginary parts of the complex eigenvalues 
of the complex dilated Hamiltonian H([) can be related to the various rate constants that 
govern such processes. 

1. Introduction 

Consider an atom placed in a monochromatic, spatially homogeneous, circularly 
polarised external radiation field. It has been known for some time that there exists 
a time-dependent unitary transformation by means of which the time dependence of 
the Hamiltonian can be removed (Bunkin and Prokhorov 1964, Salzman 1974). In 
fact we encounter here an example of a reduction to the Floquet form with an explicitly 
known Floquet Hamiltonian (for the Floquet approach, see Shirley (1965)). In atomic 
units the Hamiltonian for the system under consideration is given by 

The particle j = 0 is the nucleus with mass mo and charge eo = N, whereas the particles 
j = 1 to N are the electrons with charge e, = -1 and mass m, = 1. With particle j are 
associated its coordinate vector x,, momentum vector p, ,  orbital angular momentum 
vector 1, = x, x p ,  and spin angular momentum vector s,. The total angular momentum 
is then J = L +S, L = ZE0 l,, S = s,. In (1.1) coordinates are measured in units 
a. (the Bohr radius), masses in units m (the electronic mass) and charges in units e 
(the absolute value of the electronic charge). The vector potential A is measured in 
units eao/h (E = -&A, E being the electric field), time in units mai /h  and angular 
frequency w in units h/(ma:) .  The vector potential is given by 

(1 .2)  
V is the sum of all Coulomb potentials between the particles and W the sum of all 
their spin-spin and spin-orbit interactions. H ( t )  is acting in 2V = 2Vc 0 2Vs, the direct 

N 

A ( t )  = { A  cos wt, A sin ut, 0}, 
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product of the configuration Hilbert space XC = L2(R , dxo . . . dxN) and the spin 
Hilbert space Xs. We take for granted that H ( t )  is self-adjoint with time-independent 
domain 9 ( T )  =9, T = X,"opf/(2mj). (This presupposes that the various terms in W 
are not too singular in the points xi =xi) The equation for the time-evolution operator 
is 

a,U(t, to)  = -iH(t)U(t, t o ) ,  U(fo,  t o )  = 1. (1.3) 

General methods exist (Kato 1953, 1970, Yosida 1966) in  order to establish that (1.3) 
has a unique solution. 

3 (N+1)  

We note in passing that an equivalent formulation can be given in terms of 

H ' ( t ) = T + V +  W - x e j x  * E ( t ) = H a t - C e j x  - E ( [ ) .  (1.4) 
i i 

The corresponding time-evolution operator W(r, to) is related to U(t ,  to)  by 

We now introduce the group of unitary operators {R( t )  =exp(-iwJ3t), t E R}. R ( t )  
leaves 9 ( T )  invariant and, since V and W are rotationally invariant, 

R ( I )  V R  ( t  1-y = Vf, R ( t )  WR(t)- ' f= Wf, f €9. (1.6) 

The momenta, however, are affected by this transformation. For f c 9  we have 
(i = 0, . . . , N )  

R(r)p l lR( t ) - ' f=  (cos w t p l l  +sin wtpI2) f ,  

R(r)pi,R(t)-'f= (-sin o t p , l  +COS w r p i 2 ) f ,  (1.7) 

R (t)PI3R (t)-'f = P13L 

so that, again for f E 9, 

R ( t ) [ p ,  - e , A ( t ) 1 2 R ( f ) - ' f =  -e,a)'f, 

with U = { A ,  0, 0). Thus 

or 

1.8) 

1.9) 

where 

(1.11) 

Thus 

U ( t ,  to)  = exp(-iwJ3t) exp[-iH(t - to ) ]  exp(iwJ3to). (1.12) 
Although the above manipulations have only a formal significance, they can be given 
an exact meaning provided H,  which is a symmetric operator with domain 9 ( T ) n  
9((J3), has a unique self-adjoint extension. In  the sequel we shall demonstrate this 
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for a special case. Since J 3  is the third component of the total angular momentum, 
its eigenvalues are either * l ,  *2, . . . or *$, *$, . . . , depending upon S3 having integer 
or half-integer eigenvalues. In the first case U(t ,  f o )  has the structure predicted by 
Floquet theory (a Hilbert space version of this theory is discussed in PrugoveEki 

ue in  and-Tip (1974)), since exp (-iwJ3t) is periodic with period 27r/w. This is also t 
the second case if we write 

U(t ,  to)  =exp[-iu(J3+:)f] exp[-i(H - $ w ) ( t  -to)]exp[io(J3+:~fo]. 

In the following we shall refer to H as the Floquet Hamiltonian. We note tha 
unitarily equivalent to 

\I 

1.13) 

H is 

H = Ha‘ - wJ3 - wa ejx,2,  
j = o  

(1.14) 

the connecting unitary transformation being generated by Q = exp(-i Z.,”=o e,x ,a) .  In 
the Born-Oppenheimer approximation (fixed nucleus in the origin) and neglecting 
spin, (1.14) is the Hamiltonian for an atom placed in an electric field with magnitude 
E = -ua in the 2, direction and a magnetic field with magnitude B = -U in the 2 3  

direction but with the diamagnetic contributions to the Hamiltonian omitted. 
In practical cases, such as multiphoton ionisation of alkali atoms (e.g. Aymar and 

Crance 1980) the atomic Hamiltonian is approximated by a spin-independent potential 
model with a rotationally invariant real potential V ( r J ,  r = 1x1, which takes into account 
the interaction of the valence electron with the remainder of the atom. In the 
Born-Oppenheimer approximation the Floquet Hamiltonian then reduces to 

(1.15) 

acting in E =  L2([w3). For hydrogen V ( r )  = - r - ’  (note that we made a scale transforma- 
tion in order to remove the factor $ in the first term in the middle expression). 

In the remaining sections of this paper we study various properties of the Hamil- 
tonian (1.15). This is a non-trivial matter since the presence of the Zeeman term 
-wig destroys the semiboundedness of H from below. Nevertheless we shall be able 
to derive H o ( a )  compactness of V ( r )  for a class of potentials including the Coulomb 
potential. We also expect that there will be a rich resonance structure associated with 
H. In the hydrogenic case, for instance, p2-w13  - r - l  has continuum-embedded 
eigenvalues E,,/,,, = E ,  - mu. Although these eigenvalues have associated eigenvectors 
in symmetry subspaces orthogonal to those associated with the embedding continua, 
the term - 2 p  * a  couples them and this is usually a mechanism that gives rise to 
resonances. Note that the presence of the Zeeman term prevents one from ‘gauging 
away’ the constant vector a in (1.15). In fact one ends up with the corresponding 
version of (1.14) with the electric field term present. Since the dilation analytic method 
is a convenient means to study resonances (Combes 1974, Reinhardt 1982, Simon 
1973) we shall consider the dilation analytic properties of H. Here we meet a 
complication since the domain of H changes upon complex dilatation. This rules out 
a discussion in terms of analytic families of type A or type C (Kato 1966, ch 7), 
whereas the lack of semiboundedness of the spectrum of H rules out analytic families 
of type B. We circumvent this problem by first considering the complex dilated 
Hamiltonian (which has constant domain) and then consider the limit, where the 
dilatation becomes real. 

In 5 2 we prove the essential self-adjointness of H ,  given by ( l , l S ) ,  defined on Y 
(the functions of rapid decrease) and we show that (1.12) is indeed the solution of 

2 H = ( p - a )  - u 1 3 + V ( r ) = H o ( a ) + V ( r ) .  
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(1.3) for this special case. In $3 3 and 4 we develop a complex dilatation theory. In 
$ 5 we briefly discuss the connection with multiphoton iniosation processes. A detailed 
account of the latter, together with applications and numerical results, will be the 
subject of a forthcoming paper (Muller and Tip 1983). Also in $ 5 we discuss the 
relation between the present work and other recent articles on the subject of atoms 
in constant and time-dependent fields. For a discussion of the basic mathematical 
notations occurring in the present work we refer to Kat0 (1966). 

2. Self-adjointness of the Floquet Hamiltonian 

In this section we show that V ( r )  in (1.15) is H o ( u )  bounded with relative bound 
smaller than one, respectively HO(u ) compact, under essentially the same conditions 
that it is T bounded ( T  = p 2 )  with relative bound smaller than one, respectively T 
compact. We start by noting that 

H = MfiM-'  (2.1) 

where M = exp(-iap2/w) and 

fi = p 2  -w13 + V(X +6) + a 2  = T -o13 + V ( x  + b )  + a 2  = HO+ V ( x  +6) + a 2 ,  (2.2) 

with b = (0, a, 0) .  The Ynitary equivalence expressed by (2.1) becomes precise once 
the self-adjointness of H has been established. In H O  = T - w13, T and wl3 commute 
(in the sense that exp(iTr) and exp(io13t), r real, commute) and each eigenspace 
2em = P m Z  of 

4x 

i 3 =  mPm (2.3) 
m = -m 

reduces Ho, the reduction of Ho to 2f" being given by (T,,, is the reduction of T to Rm) 

Hom = T,,, -mu. (2.4) 

In the momentum representation Tm is a real multiplication operator and consequently 
Hom with domain Ed, = (i+H0m)-12em c 2em is self-adjoint on Zm. Let now 9 = 
{f = 0 fm!fm E Edm, Em IIHomfmllk < a} (1) * ] I m  is the norm in Em) and define Gof for 
f ~ 9  by HOf=OmHo,f,,. It is straightforward to show that RO, thus defined, is 
self-adjoint. We note that 9 contains 9(,=9(T)nEd(13).  In fact it is strictly larger 
than 90, since f, given by f=O2=,,fm, f m ( p )  = p - ' ( l  + p 2 ) - " 2 [ ( p 2 - m w ) 2 +  1]-1'2hm 
with Em=" lh,,, <CO but for which Zz=o m '"lhml2 diverges, is not contained in 9 ( T )  
nor in 9(13). 

m 2 

Proposirion 2.1. 9, the Schwartz space of rapidly decreasing functions, is a core of Ho. 

Proof. We note that the notions of closedness and core are invariant under a unitary 
transformation from one Hilbert space to another. Since Y is invariant under the 
Fourier transformation and the latter defines the unitary transformation between the 
coordinate and momentum representation it follows that Y is a core in the coordinate 
representation if it is one in the momentum representation. We prove the latter. Let 
~ E Y .  Then H O f =  [p2+iw(p,ap2-~2dp,)]f  is again in 9. We denote the restriction 
of Ho to Y by E?,. Since Y c go c 9 it follows that HO c A,* and go =Hi,** c Go. It 
remains to show that f?$ = Go. Let therefore g E EdCJ?: ) and let @(f )  = ( f ,  J?o*g),  so that 
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I @ ( f ) l  e cilfll. Taking f E 9 we have (Hof, g )  = (f, Gtg) = @ ( f ) .  In particular we have 
forf, E 9, c 9 that / @ ( f m ) /  dcJlfmlJm. On the other hand @ ( f m )  = (Homfm, g,),, where 
g, = P,g. Since the domain of the adjoint A *  of a densely defined operator A in a 
Hilbert space X is 9 ( A * )  = {g E XI I(Af, g) l  ccllfll, V ~ E  9 ( A ) }  it follows that g, E 
9 ( H & , )  = 9 (Ho,) = 9,. Thus@(f,) = (f,, Homgm) and,withfN = @:=-~f,, W f N )  = 
x m = - N ( f m , H O m g m ) m  = ( f N $ @ m = - N H O m g m ) .  But I @ ( f ) l s c f  for every f E @ m = - N % m  

SO that it follows that I(@:=-NHomgmllcc, i.e. Z m = - N I I H O m g m l l m d C  . Since C does 
not depend on N it follows that ZLZ-, ( ( H o m g m l l m <  a, i.e. g E 9. 

N N N 

N 2 2  

2 

In the coordinate representation we have for f E Y 
( ~ , f ) ( x )  = ( - a i +  iw(xlaxz-x2ax,)If(x). (2.5) 

This expression indicates that the difference in the domains of T and Ho can be traced 
to the presence of x1 and x 2  in (2.5).  This suggests the use of a cut-off function in 
coordinate space. We define 

and we write 

V ( x  + b )  = V , ( x ) +  V 2 ( x )  V l ( x )  = V ( x  + b ) @ ( r ) ,  V 2 ( x )  = V ( x  +b) [ l  - @ ( r ) ] .  

(2.7) 

At this point we assume that the real potential V ( r )  possesses the property: 
(A): V ( r )  is T bounded with T bound smaller than one and V(r )  is essentially 

bounded for r > ro > 0. 
Taking p > ro + b it follows that V 2 ( x )  defines a bounded multiplication operator so 
that it remains to consider V I .  In the following we denote by 9 the domain of Ho, 
the closure of Ho, in the coordinate representation (thus its elements are the Fourier 
transforms of the domain 9, introduced earlier). 

Lemma 2.1. Let ~ E Y ,  Then @ f ~ 9 ( T )  (the elements of L2(R2 ,dx )  with Fourier 
transforms f ( p )  with property p 2 f ( p )  E L2(R3,  dp)) and 

IIT@fll (1 + E  ~ l l ~ o f l l f  b(E )llfll? (2.8) 
with 6 ( E )  non-negative and where E > 0 can be chosen arbitrarily small. 

The proof of this lemma, which amounts to a repeated use of inequalities, is given 
in appendix 1. 

Lemma 2.2. Let V ( r )  have property (A). Then V I  is Ho bounded with Po bound 
smaller than one. 

Proof. Let f E Y. Then, denoting the T bound of V by C Y ,  0 < a  < 1, 

/ I  V, f l l= IlV@fIl c CY IlTWll +Pll@fll a(1  + E  )II~ofl l+Pllf l l= Y l l H o f l l  +Pllfll> (2.9) 

where y can be made smaller than one by choosing E sufficiently small. Since Y is a 
core of Go, (2.9) can be extended to 9. In case V I  is not defined for some f e 9  its 
domain can be extended to 9 by a standard limiting procedure: Y being a core of 
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Ho, there is a sequence {f,} c Y such thatf, + f ~  9 and Hof, + Hof. Now (2.9) applied 
to V,(f, - f m )  shows that {Vlfn} is a Cauchy sequence and we define Vlf by its limit. 

Since V2 is bounded, we have proven: 

Theorem 2.1. Let V have property (A). Then fi =Ho+ V(x + b ) + a 2  as defined by 
(2.2) is essentially self-adjoint on Y and the domain of its unique self-adjoint extension 
A is 9. 

Corollary 2.1. H = ( p  - U ) ~ - W / ~ +  V(r) ,  as defined by (1.16), is essentially self-adjoint 
on Y and the domain of its closure fi is M - ' 9 .  

Proof. A unitary operator U maps a self-adjoint operator A with domain 9 ( A )  into 
a self-adjoint operator A' = UAU-' with domain U9(A) .  In addition it maps a core 
of A into a core of A'.  In our case U = M and M leaves Y invariant. 

We now formulate a second condition on V(r):  
(B): V(r)  is Tcompact,essentiallyboundedfor r> ro>Oandlim,,,sup,,, 1 V(r)l =U. 

(Then V ( x +  b )  is T compact and 
We note that (B) implies (A). A sufficient condition for (B) to be true is that V(r)  is 
locally square integrable and is contained in L" for r 2 r o  with the property 

sup,>, 1 V(r)l= 0 ( V ( r )  E L2+ (Lm)(). As is well known these properties imply 
that V is T compact. 

sup,,, I V(x+b) l  = O . )  

Theorem 2.2. Let V ( r )  have property (B). Then V(x +6)  is Go compact. 

Proof. We first show that VI is Go compact. Let z e p ( H o ) ,  the resolvent set of fro. 
Then there is for every f~ 9 a unique g E 3C with f = (z -E?J'g. It follows from 
(2.8) that forfEY, f =  (z - H o ) - ' g  

/lT@(z - ~ o ) - ' g I l ~  (1 +F)lIHo(z -Go)- 'gl l+b(~)l l(z -Ho)- ' l lg l l~k~lg~~,  

where k is a positive constant. Since Y is a core of Ho it follows that T@(z -Go)-' 
defines a bounded operator. Now Vl(x)(z -BO)-' = V(x +6) (1+  T)-'  x 
(1 + T)@(z -E?o)-' is the product of a compact operator (V(x + 6 ( l  + T ) - ' )  and a 
bounded operator ((1 + T)@(z and hence is compact, i.e. V , ( x )  is R, compact. 

Let f~ 3C and z ~ p ( f i " ) .  Then 

IlV(x + b ) ( z  -Ho)- ' f -  VllZ -Go)-lfIl= IIVZ(X)(Z - ~ o ~ - ' f l l ~ l l V 2 l l m l l ( ~  -mill llfll. 
(2.10) 

But I /  V211m = sup1 V ( x  + 6 )[ 1 - @(r) ] l  S sup,>p 1 V(x + 6)l tends to zero for p + CO, so that 
it follows from (2.10) that V(x + b ) ( z  - I fo) - '  is the uniform limit of a family of 
compact operators and hence is itself compact, i.e. V(x + b )  is Ho compact. 

2 Let H o ( a ) = ( p - a )  - -mi3  as in (1.15). It is clear from the above (corollary 2.1 
with V(r)  = 0) that Ho(a)  is essentially self-adjoint on Y and its closure f o ( a )  has 
domain M - ' 8 .  We can now formulate: 

Corollary 2.2. Let V(r)  have property (B). Then V(r )  is H o ( a )  compact. In particular 
this is true for the Coulomb potential. 
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It follows from this result that fi and H o ( a )  have the same essential spectrum. 
Since r?,(a ) -a  and f i 0  are unitarily equivalent and Ho,, m E Z has spectrum [-mu, CO) 

it follows that the essential spectrum of fi covers the real axis. Thus the f i o ( a )  
compactness of V ( r )  does not lead to detailed information about the spectrum of H. 
This becomes quite different upon complex dilatation as will be discussed 
following sections. 

exp(-iw13r) exp(-ifil) is the solution of (we put to = 0 in U(t ,  to )  and write 
U(?,  0 ) )  

We close this section with a demonstration of the fact that 

a ,U( t ) f=  - iWt )U( t ) f ,  U(0 )  =I ,  

where 

H ( t )  = [ p  -A( t ) ] '+  V ( r )  

in  the 

O(t)  = 
U ( t )  = 

(2.11) 

(2.12) 

and f ~ 9 ( H ( t ) ) .  It follows from Kat0 (1953, 1970), (see also PrugoveEki and Tip 
1974) that (2.11) has a unique solution U(t ) .  Amongst others, U ( t )  has the following 
properties: U ( t ) ,  t E [w is strongly continuous in t ,  it  is unitary, U ( t ) 9 ( H ( t ) )  c 9 ( H ( t ) )  
(note that 9 ( H  ( t  )) = 9 ( T ) )  and 

d , l / * ( t ) f  = iU*(t)H(t)f ,  f E 9 ( T ) .  (2.13) 

An attempt to show that f i ( t )  = U ( t )  by direct differentiation fails, since, formally, 

a , r i ( t ) f  = -i exp(iw/3t)(fi +w13) exp(-it?t)f 

and we do not know if exp( -g t ) fE  go for f~ 9(] (this is the case if V ( r )  vanishes, as 
shown in appendix 2). We therefore proceed differently. We note that (2.13) has at 
least one solution (namely U*( t ) )  which is unitary and strongly continuous in t. 

Let now W ( t )  be a second solution with these properties. Then, for f~ 9 ( T )  (so 
that U ( t ) f E  9 ( T ) )  

& W ( t ) U ( t ) f =  iW(t )G( t ) f+  W ( T )  . - iH( t )U(f ) f=O.  

Since W(O)U(O)f = f ,  W ( t ) U ( t ) f  is continuous in t and W ( t ) U ( t )  is bounded, it follows 
that W(r)U( t )  - I ,  so that 

W ( t )  = W(t )U( t )U*( t )  =IU"( t )  = U * ( f ) .  

Let now f E 90. Then exp[iwlstlf E 9,) and 

d,C*(t)f = i exp(itir)(R exp(iw13t)f 

= io([) exp(-iw/,r)[(p -a12 + ~ ( r ) ]  exp(iw13t)f 

(2.14) 

U*( t ) f - f= i  1)'ds f i* ( s )H(s ) f= i  [Ids U * ( s ) H ( s ) ( l +  T)-'(l + T ) f .  (2.15) 

Since 9o is a core of 7' there is a sequence {g,}c90 such that g, + g  and Tgn + Tg, 
g E ~ ( T ) .  But then the right-hand side of (2.15) with f replaced by g -g, tends to 
zero (since 1; ds IIH(s)(l +?')-'I[ is bounded). Thus (2.15) and, by differentiation, 
(2.14) holds for every f ~ 9 ( T ) .  Since O(t)  is unitary and strongly continuous we 
have proven: 

0 



3244 A Tip 

Theorem 2.3. C( t )  is the (unique) solution of (2.11). 

3. Complex dilatation of the free Floquet Hamiltonian 

We recall that elements of the dilatation group ( U ( 0 )  = exp(iOA), O E R, A = 
i ( p  . x +x . p ) }  act on f(x) E 2 according to 

( U ( @  )f)(x 1 = exP(30/2)f[exP(e 1x3, 

(U (6 )fNp ) = exp(-3@/2)f[exp(- e ) p  1. 

U(B)xU(B)- '  = x  exp(t9) and U(O)pU(B)-' = p  exp(-@), 

whereas in  the momentum representation 

The operators x and p transform according to 

whereas the angular momentum 1 = x x p is left invariant. Complex dilatation theory 
is concerned with the analytic continuation of real dilatations (i.e. 19 + 5 E e). Under 
such transformations the spectral properties of the Hamiltonian sometimes change in 
a way that makes it possible to treat resonances in terms of complex isolated eigenvalues 
of the (non-self-adjoint) complex dilated Hamiltonian (Aguilar and Combes 1971, 
Simon 1973). For the model considered here, we expect the imaginary parts of such 
eigenvalues to be associated with the various ionisation probabilities occurring in a 
multiphoton ionisation process. There are two possibilities to implement this program 
in our case. The first one is to start from the Hamiltonian (1.15), which, upon a real 
dilatation, takes the form 

H ( O )  = [ p  exp(-O)-a]2-w/3+ ~ [ r  e x p ( + ~ ) ] = ~ ~ ( a ,  e ) +  V [ r  e x p ( + ~ ) ]  

= T ( 8 )  - w13 - 2a p exp(-0) + a2  + V[r  exp(+6)] 

= ~ ~ ( 8 )  - 2a p exp(-O) + a 2  + V [ r  exp + e)]. (3.1) 

The second one is to start from fi, given by (2.2). After a real dilatation this 
Hamiltonian transforms into 

fi(t9) = H o ( 8 ) + a 2 +  V [ x  exp(+O)+6]. (3.2) 

Here we have the attractive feature that H o ( 0 )  has simple spectral properties (since 
T and l 3  commute) but also the drawback that V ( x + b )  is not dilatation analytic, 
even if V ( r )  is. This difficulty can be overcome by means of a so-called exterior 
scaling technique (Simon 1979) but then the simplicity of the standard dilatation 
transformation is lost. We therefore return to the first alternative (3.1), where we 
encounter the complication of the symmetry breaking term -2a p e x p ( 4 ) .  In 
analysing the spectral properties of the corresponding complex dilated free (i.e. without 
V )  Hamiltonian 

H d a ,  5) = T exp(-26) - wl3 + a - 2a * p exp(-i) = H o ( l )  + a - 2a . p exp(-l), 
(3.3) 

we find, somewhat surprisingly, that the term -2p . a exp(-f.) does not affect the 
spectrum of Ho([).  In this respect it acts as if it were a relatively compact perturbation 
of Ho(B). This is not the case but in the momentum representation H&) acts as a 
multiplication operator in p and 6 ( p ,  6 and 4 are the spherical coordinates associated 



Atoms in circularly polarised fields 

with p )  and we can make a direct integral decomposition 

3245 

(3.4) 

where now on each fibre 

is Ho(f ,  0 ,E)  compact. We shall, however, follow a different approach. In fact the 
presence of the Zeeman term -w13 is of paramount importance; if it is deleted Ho(u, f )  
changes into [ p  exp(-f) -aI2,  which operator has a totally different spectrum for 
non-real f (a parabola and its inside, see Combes and Thomas (1973)). A further 
complicating factor is that, although the domain of the complex dilated Hamiltonian 
does not depend on f ,  it differs from the domain for real 5 = 8. (Note that both (3.1) 
and (3.2) have &dependent domains.) We overcome this problem by first considering 
non-real f ,  where we are dealing with an analytic family of type A, and then we show 
that the generalised strong limit Im l+ 0 exists. 

We now introduce some notation. If 4‘ is complex we often split it according to 
f = B + i$, 8, II, real and we define two open strips in @: 

I ,  = {f E c/o < *$ < *a/2}. 

Further, let go = 9 ( T )  n 9 (1,) = 9 ( p  2 ,  n 9 ( I 3 )  as before. 

Proposition 3.1. Ho(a, f )  = [ p  exp(-5)-aI2-wl3, f~ I ,  with domain go is closed. 

Proof. Since p a is T bounded with arbitrarily small T bound and since go c 9 ( T )  it 
is sufficient to give the proof for H o ( f ) .  We work in the momentum representation. 

The subspaces Xm,  introduced in 8 2, reduce Ho([ )  and 

H o m  (6) = T m  ( 5 )  - mu = Tm exp(-25) - mw 

is closed with domain 9,,, = 9 ( T m ) .  Now let 

For f E 9 (5) we define H o ( f ) f  = 0, Hom ( f ) f m .  Then Go(f) with domain 9 (5) is closed. 
We show now that 9(5) =LBO, for which it is sufficient to prove that 9(l) c 90. We 
note that IGo(f)l = [I?0(f)*f10(f)]1/2 with domain 9( f )  is closed (Kato 1966, p 334). 
For every f E 9 (5) there is a unique g E 9t with f = [ 1 + Ino(f)l]-’g. Each Xm reduces 
/Go(f)l and its restriction to Xm is given by 

IHo(S) lm = [Horn ( f ) * ~ o m ( t ) l l ”  = [ ~ i  (0) - 2” COS 2$ Tm(8) + m w I 
= { [ ~ , ( ~ ) - m w  cos2+IZ+m2w2sin2 ~ I I , ) ” ~  

= [T’, (e) sin2 ~ I I ,  + (rm(e) cos 24 - mw)2]”2. 

2 2 1/2  

Now 
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and 

S i n c e 9 ( T ( l ) ) = 9 ( T )  a n d 9 ( l 3 ( l ) ) = 9 ( ( I 3 )  it follows that V ( ~ ) ~ C I = ~ O , V [ E @ .  A 
real dilatation transformation transforms Ho(a,  i ) ,  [ E I ,  into U(Bo)Ho(a, ( ) U ( O d '  = 
Ho(a,  I +  60) so that going from Ho(a,  Lo) to Ho(a,  [), lo, E Z+(I-) can be interpreted 
as a complex dilatation transformation. In addition we have: 

Proposition 3.2. {Ho(a, l ) ,  5 E I,} are holomorphic families of type A (for this notion, 
see Kat0 1966, p 375). 

Proof. 2?(Ho(a, 5)) = 9do, independent of 5 E Z+(I-) whereas for each f E ado, Ho(a,  [ ) f  
is a vector-valued analytic function of 5 E I+(Z-). 

Proposition 3.3. K,([)  = riHo(a,  5, i t u  tan 4, 
contraction semigroups. 

E I ,  generate strongly continuous 

Proof. We consider K + ( [ ) .  We note that 

K-([)* = iHo(a, f )  - f a 2  tan 4 = K - ( T )  
and that K + ( [ )  and K+([)* with domain 
in 

Re ( K + ( [ ) f ,  f )  = Re ( K f  ( ( I f ,  f )  = -sin 2&([p exp(-O) -a / (2  cos $1I2f, f )  s 0 

for [ E I+ and for each f E Bo. Thus K + ( l )  and K+(l)* are closed dissipative operators 
and consequently they are generators of strongly continuous contraction semigroups 
(Lumer and Phillips 1961, p 687). 

are closed. A small computation results 

Remark. Proposition 3.3 also follows from the explicit representation for the associ- 
ated semigroup as given in appendix 2. The open right half-plane is in the resolvent 
set of the generator A of a strongly continuous contraction semigroup and \J(z -A)-'\\ G 
(Re * ) - I ,  Re z > 0. Thus: 

Corollary 3.1. The resolvent sets p ( H o ( a , [ ) )  of Ho(a,  l ) ,  [ € I i ,  are not empty. In 
fact every z E Q= with Im z > +a2 tan 4 is contained in p(Ho(a ,  l ) ) ,  ( E I,, and 

il[z - ~ ~ ( a ,  ( ) ] - ' \ I  s (Im z - fa  ' tan 41-I  

for such z. Similarly each z with Im z < :a2 tan $ is in p(Ho(a, I ) )  . 5 E I - ,  in which case 

/l[z -H"(u, ~)]A1llc (--Im z + L  2a ' tan CL)--'. 

It follows that for ( E I+ and Im z > f a  * tan (I, 
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and a similar expression can be given for l E I -  and Im z <+a2 tan $. In appendix 2 
we prove, starting from (3.5), that for ( E  I,, r ( H o ( a ,  C)), the spectrum of Ho(u, l), is 
given by the set of half lines 

(3.6) Z = Z(a, l) = Z(u, 4) = { z  = a2+A exp(-2i$) + kw, A E [O,OO], k E Z}. 

We finally note that [ z  - Ho(a, l)]-' is a bounded, operator-valued analytic function 
of both z and 5 for { z ,  [}EN = {{z,5}l[ € I + ,  z ~ p ( H ~ ( a ,  5))) (Kato 1966, p 367, 
theorem 1.3, Reed and Simon 1978, p 14, theorem 12.7). 

4. The dilated full Floquet Hamiltonian 

Suppose that V ( r )  is Ho(a)  compact as discussed in li 2. Then V ( 8 )  = V[r exp(8)] is 
Ho(a, 8) compact so that K ( z ,  8) = V(B)[z -go@, e)]-' is compact for each 8 E R and 
each non-real z .  In the usual complex dilatation theory (Aguilar and Combes 1971) 
an analytic continuation K ( z ,  l) of K ( z ,  8 )  for complex 5 is made. Here we have to 
proceed in a different way since RO(a, l) does not have a strip containing the real axis 
i n  its analyticity domain, due to the fact that 9 ( f i 0 ( a ,  51) is different for real and 
complex 5. We therefore start from 5 E I+ and consider the limit $LO. Of course we 
can also start from E I -  and have +TO. We shall not discuss the latter case any 
further since all statements and proofs are the mirror images of the former ones. 

Suppose that V ( r )  is a dilatation analytic potential with respect to T (in short, 
T-dilation analytic or T analytic), i.e. V ( 8 )  has a T compact analytic continuation 
V ( [ )  for E I, = {l E @ I  IIm ( 1  < a }  for some a > 0. Then for z E p(Ho(a, l)), V5 E Io, 

(4.1) 

P <TI23 

K ( z ,  5) = V(l)[Z -H&, l ) I - l =  V ( l ) ( 1 +  T)-'(l + T ) [ z  -Ho(a, 0 1 - l  

is a compact-operator-valued analytic function of 

5 E I, n I+ = I, +. 

This follows from the fact that, since 910c 9 ( T ) ,  (1 + T ) [ z  -Ho(a,  5 ) I - l  is bounded 
analytic and that V ( l ) (  1 + T)-*  is compact analytic. Thus V(5)  is Ho(a, l)compact 
for 5 E I,+ so that 

(4.2) H ( 0  =Ho(a, l) + V ( l )  
with domain go is closed. 

We now assume that V ( r )  has the following properties: 
(C): V ( r )  has the properties (B), V ( r )  is T analytic with analyticity domain Iu, 

a > O  and for 

V ( l )  = V( l )@(r )  + V(O[ l  -W)I= Vl(L-1 + V2(lL (4.3) 
with @ ( r )  given by (2.61, there is a po > 0, a constant k and a strip Io = {ll IIm 4' <Go} 
such that for p > P O  and 5 E IO, 11 V2(l)llm G k. (For the Coulomb potential we obviously 
have no restrictions on 9.) 

If llK(z, 5111 S P  < 1 for some z and 5 then 

[z -Hiico1-' = [ z  -Ho(a, r,1-'[1 - K ( z ,  s,3-', (4.4) 

which expression is a convenient starting point for a discussion of the spectral properties 
of H ( l )  and the limit $LO. (The closure bar is needed since we allow 4 = 0. From 
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now on we shall omit the bar when no confusion can arise.) The usual approach to 
arrive at (4.4) is to make large negative for Hamiltonians bounded from below. 
This is obviously not possible here but instead we can make y = Im z large positive. 

Lemma 4.1. Let V(r) have the properties (C). There is a region Ju in the open upper 
half-plane, a strip I ,  = {[IO s Im [ < Sl} and a constant p E (0, 1) such that /IK(z, [)I1 s p 
f o r e v e r y z E 4  and[EI1.  

Proof, Since operator norms and spectra are invariant under real dilatations (which 
are unitary transformations) we can put 8 = 0. Now 

~ I K ( z ,  i+jIIS IIv(i$)Q[z - ~ o ( a ,  ~(I,)I-'II+IIv(~(I,N~ -@Xz  - ~ o ( a ,  i(~,)]--~lI. (4.5) 

For p sufficiently large we have for 4 E [0, $21, $2 = min(+ho, 7r/4}, 11 V(i$)(l-  @I X 

[ z  - ~ ~ ( a , i l ~ ) I - ' I l ~ k I l [ z  - ~ ~ , ( a , i ( 1 , ) 1 - ' ~ ~ ~ k [ y - f a ~ t a n ( 1 , ] - ' c k ( y - 1 a  < a  for 
y > y > 0 with suitably chosen y 1 = y l ( k  ). 

In Appendix 1 we show that for f E Y 

1 2 - 1  

IITQII ki/IHo(a, i(I,)fII + kzIIfII, (4.6) 

where k ,  and k 2  are positive constants, independent of $ E [0, $3], $3 E (0 ,7~/4) .  Since 
Y is a core of Ho(a,  i4) (the proof for (I, # 0 is similar to the one for (I, = 0) it follows 
that (4.6) is true for everyfEB(Ho(a,  i4)j so that (y  = Im z >;a2) 

ll(y + T)Q[z -Ho(a, i4)1-'11 

yII[z - ~ o ( a ,  i$)I- 'lI+klII~o(a, i ~ ) [ z  - ~ o ( a ,  ~ G ) I - ~ I I  
+k2II[z i@)I-'II 

(4.7) 

Now there is a curve y = CL + ~1x1,  F ,  v > 0, such that the right-hand side of (4.7) is 
smaller than a positive constant k 3  for z = x +iy in the open set A E @, consisting of 
the points above this curve. Thus 

IlV(i4,@[z -Hob i(I,)l-lIl 
= llV(i$)(y + T ) - ' ( y  + T)@[z -Ho(a, i(I,)l-111~k411V(i4)(y + T)-'Il. (4.8) 

Since V = V(0) is T compact, there is a y 2 > 0 ,  such that llV(O)(y + T)-'ll< (8k3I-l 
for y > y2.  Also, V([j being T analytic, there is a (L4 > 0, such that for $ E [O ,  (I,4], 

ll[V(i4) - V(Ojl(1f Till< ( 8 k J ' .  

Thus for 4 E [O,  G4] and y > rnax(1, y 2 }  

IlV(i(I,)(Y + 7 T 1 I l  

s/lV(O)(y + V111+ll[V(i4)- V(Ojl(1 + T)-'lI * 1/(1+ THy + VI1 

(4k4)p. (4.9) 
Replacing CL above by max{p, yl, y2,  l}  we have lIK(z ,p) l ls t  for z in the set Ju thus 
defined and for 

5 E I1 = {[IO< Im 5 < min(G2,1jl3,(1,4)). 
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Corollary 4.1. There is a constant k ' > O  such that ll[z - H ( f ) ] - ' I l < k '  for z E A  and 
f E I* .  In addition [ z  -H(f)]-' is analytic in both z and f for { z ,  f }  E A + I 2  c C x C 
where I2 is in the intersection of I,+ and Il. 

Proof. As is clear from the first part of the proof of lemma 4.1, /l[z -Ho(a,  f ) ] - ' I l  is 
bounded by a constant k" for z E A and 5 E I I .  Thus, for such z and [ 

I / [ z  -H(f)-'IlSk"[l - K ( z ,  f)ll]-'S2kt'= k ' .  (4.10) 

The analyticity follows from the analyticity of [ z  -Ho(a,  f)]-' for { z ,  f } € N  (see 3: 31, 
the analyticity of K ( z ,  f )  for { z ,  ( } E N  nA X I 2  and the boundedness of K ( z ,  5); 
IlKb, f ) 1 1  $. 

Theorem 4.1. H ( 8 )  is the generalised strong limit of H ( f )  for $LO. In particular 

Proof. Referring to Kat0 (1966, p 429, theroem 1.5) and noting that go is a core of 
H ( 8 )  (since Y is a core and 9 ~ 9 ~ )  we have to show two things. The first is that 
the intersection of p ( H ( 8 ) )  and the region of boundedness of the family { H ( f ) ,  f E I,+} 
is not empty. This is clear from the self-adjointness of H ( 8 )  and the above corollary. 
The second is that for each fE90 ,  H ( f ) f + H ( e ) f .  Indeed, forfE$30 

IIH (Of - H (6 )fll 
/exp(-2f) -exp(-28)1 IITfll+ 21exp(-f) -exp(-@)/ IIP afll 
+ l l [ v ( o -  v(e)l(l+ ~)-*llll(1+ nfll (4.12) 

where all terms on the right tend to zero (the last one since V ( f )  is T analytic). 

We are now in a position to discuss the meromorphic continuation of certain inner 
products ( [ z  -H(O)]-'f,  g)  = (R(z ,  8)f, g) .  Since physical quantities pertaining to 
multiphoton ionisation processes can be expressed in terms of such inner products 
this is a result with important practical consequences. Here we have to deviate in our 
discussion from the approach followed by Aguilar and Combes since now the real 
axis is not in the analyticity domain of f .  Let f and g be analytic vectors for the 
dilatation group. Then f ( f )  = U(f) f  and g([) = U ( f ) g  are analytic and their limits for 
$LO exist. (In fact we only need meromorphy and the existence of the limits.) Let now 

F ( z ,  5) = (R ( z ,  f ) f ( f ) ,  g ( f ) ) ,  b,5} E x 1 2 .  (4.13) 

F ( z ,  f )  is analytic in  f E I2  and invariant under real dilatations so that it must be f 
independent. According to theorem 4.1, F ( z )  = F ( z ,  8 )  = l imF(z,  f )  for $40 so that 
F ( z )  = F ( z ,  f ) ,  z EA. Since F ( z )  contains the resolvent of a self-adjoint operator it 
is analytic in  the open upper half-plane. Thus F ( z ,  f ) ,  f €I2, can be analytically 
continued in the whole open upper half-plane. Next, since K ( z ,  5) is compact analytic 
in { z ,  [}EA x I z  it follows (Dunford and Schwartz 1959, lemma VII-6.13, Steinberg 
1968) that for fixed f E 1 2  [l - K ( z ,  5)I-l has a meromorphic extension to all z for 
which K ( z ,  5) is analytic in z ,  in particular to all z ~ p ( H ~ ( a ,  f ) ) .  Consequently 
R ( z ,  f )  =RO(z ,  5)[1 - K ( z ,  5)]-', Ro(z,  5) = [ z  -Ho(a ,  f ) ] - ' ,  has such a meromorphic 
extension and the same is true for F ( z ,  5) (as we have seen F ( z ,  f )  is actually analytic 
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in z for z in the open upper half-plane). The various half-lines from Z are branch 
cuts for F ( z ,  (), the various 'threshold' a L  + kw, k E Z are branch points. Keeping 
z E Ju fixed we can continue [ 1 - K ( z ,  ()]-I and R ( z ,  () meromorphically to all ( E I, + 

(since Ro(z, 5) is bounded analytic and K ( z ,  5) compact analytic for all ( E I,+ and 
fixed z EA).  Thus F ( z ,  () is meromorphic for L E  I,+ and fixed z EA. But since 
it is the meromorphic extension of a (-independent function it is itself ( independent 
and F ( z ,  5) = F ( z )  as long as the half-lines from Z are avoided. Since the latter depend 
on 4 we can control the area into which we can continue a particular branch of F ( z ,  5) 
by the choice of 4 (see figure 1). F ( z , ( ) ,  as a function of z ,  can have poles on the 
real axis and in the lower half-plane outside Z. These poles are eigenvalues of the 
dilated Hamiltonian. They have finite multiplicity, are 5 independent but can be 
uncovered and covered as 4 changes, so that one of the half-lines sweeps over them. 
Their only accumulation points are the various branch points a 2  + kw, k E E and they 
do not occur in the open upper half-plane. These results follow in essentially the 
same way as in Aguilar and Combes (1971). In the present case we do not expect 
that these eigenvalues are confined to a bounded region in C, due to the presence of 
the Zeeman term -w13. We also expect that H ( [ )  does not have real eigenvalues but 
that all eigenvalues have turned into resonances (the poles in the lower half-plane). 
The physical reason behind this is that an atom always photo-ionises upon absorbing 
a sufficient amount of photons. 

Figure 1. Analytic continuation in the complex z-plane of the resolvent [ z  -H(5)]- ' .  
The spectrum of H ( l )  is given by the half-lines going off at an angle 2$ ($ = Im [) and 
point eigenvalues of finite multiplicity (crosses). The domain of analyticity M can be 
extended to the whole open upper half-plane. Further continuations from a point z E M  
into different branches are indicated. 

We note further that we cannot expect R ( z ,  (), Im z > 0, ( E I,+ to have an analytic 
continuation to ( with 4 < 0. For, as soon as CL becomes negative, an infinite number 
of half-lines from Z will sweep over z and this will give rise to singularities. 

5. Discussion 

Although we shall be more specific in a future work concerned with actual applications, 
let us here briefly point out the connection between the present formalism and 
multiphoton ionisation processes. Suppose V ( r )  possesses the properties (C) and 
suppose further that Ha' = T + V has a single non-degenerate bound state q50 with 
associated eigenvalue eo. Let this state be an s state. Then do(() is still an eigenstate 
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of H"' ( l )  = T ( l )  + V ( l )  at the eigenvalue eo. It may now happen that H ( l ) ,  4' E I+ 
has a corresponding resonance eigenstate, i.e. an eigenstate 4 (l) with associated 
complex eigenvalue E = eo + A - ir = Eo - ir. Since ~ $ ~ ( l )  is the eigenvector of H 1 ( l )  = 
H" ' ( l )  + a 2  - w13 (with eigenvalue eo  + a ') we can consider 4 (l) to be the perturbed 
eigenvector, related to &([) under the perturbation W ( [ )  = H ( 5 )  - H l ( l )  = 
-2p * a  exp(-l). Since W ( [ )  is H1( l )  bounded with zero relative bound it is indeed a 
well behaved perturbation. Let now the system be in the state do at time zero and 
let A ( t )  be switched on between time zero and time t after which time it is switched 
off again. The state vector at time t is then 4(t)  = U(t)& = exp(-iw13t) exp(-&h)q5, 
so that the ionisation probability is 

(5.1) pi = pi(t) = 1 - I ($( t ) ,  40)jz = 1 - lf( t) /* 

f ( t )  = (exp(-i&t) exp(-iiitMO, 40) = (exp(-iHt)40, 40) 

with 

= (exP[-iH(l)t14Jo(l)l 4 f m  
+ao+ia 

= -21ri j dz exp(-izt)([z - ~ ( l ) 1 - ' 4 J o ( 0 ,  4 o ( t - ) ) *  ( 5 . 2 )  
-m+k 

We now deform the contour as shown in figure 2 .  Then f ( t )  becomes the sum of the 
residue in z = E  and a background contribution fbs: 

( 5 . 3 )  f(0 =fo exp[-Wo - ir)tl +fbg(t). 

Figure 2. Deformation of the contour in order to evaluate the pole contribution from a 
complex pole in the lower half-plane. 

If fbg(t) is small we thus find that (bo is approximately depopulated at a rate 2 r .  If 
V ( r )  supports more bound states there will be more exponentially decaying contribu- 
tions to Pi(t). In that case it is more illuminating to consider the production of electrons 
in a certain energy interval A€. We expect that this process can be approximately 
described with a single rate constant, provided there is only a single bound state of 
H 1 ( l )  in this interval. For a model where the field-free Hamiltonian possesses a single 
bound state we performed a calculation of the corresponding resonance and also of 
the energy spectrum of the emitted photo-ionised electron (Muller and Tip 1983). 
Due to the simplicity of the model a perturbation-free calculation was possible and 
the resonance could be followed in the complex plane up to fields in the order of one 
atomic unit (the field due to the nucleus an electron experiences in the first Bohr orbit 
in the hydrogen atom). The electronic energy spectrum shows peaks at energies 
E, = Eion + m hw (Eion is the ionisation energy) with m such that E, > 0. In fact the 
term mhw enters the formalism as an eigenvalue of hw13 and is related to the fact 
that energy can be removed from the radiation field by absorbing an integral number 
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of photons, each having an angular momentum h.  This is brought out even more 
clearly in a second quantised formalism where, in the case of one circularly polarised 
field mode, the sum N + l3  of the photon-number operator N and l 3  is a constant of 
the motion (see below for the second quantised formalism). It turns out that the 
above model nicely explains a number of features that were found experimentally in 
N-photon ionisation (N 5 11) of Xenon atoms in intense laser fields (Kruit et a1 1981, 
1983). 

We now discuss some related work. 

5.1. The Dc-Stark case 

Here one studies the Hamiltonian 

N 

H = H"' + E  C e,x,, 
j = O  

(5.4) 

which is (1.14) in the limit that w -PO and E = w a  (the electric field) constant. This 
type of Hamiltonian has been studied in great detail by various authors (Avron and 
Herbst 1977, Herbst 1979, Herbst and Simon 1981). Here we encounter another 
case where the complex-dilated Hamiltonian has no norm-resolvent limit but only a 
strong-resolvent one as the complex dilatation parameter becomes real (Herbst 1979). 
A technical point in common is the use of an explicit representation for the semi-group 
associated with the complex dilated free (i.e. V = 0) Hamiltonian. The results differ 
dramatically, however. In the Dc-Stark case the spectrum is empty for 0 < 1Im [/ < 7r/3, 
whereas here (appendix 2) we find an infinite set of parallel half-lines. 

5.2. Circ u larly polarised fie Ids 

Circularly polarised fields have also been considered by Enns and Veselii (1983). 
These authors consider the same Hamiltonian as in the present work but for a larger 
class of potentials V ( r ) .  They do not consider the possibility of complex dilatation 
but instead some scattering theoretical aspects. They also conjecture that for potentials 
V ( r )  vanishing at infinity no bound states are left (i.e. at atom always ionises when 
it  stays in the field indefinitely long). In a second quantised version of the theory 
(Grossmann and Tip 1980) it was found for hydrogen that an infinite set of negative 
energy bound states, accumulating in zero, exists. On the other hand it was found 
that the photo-ionisation probability tends to one in the limit of increasing field 
strength, provided that positive energy eigenvalues, if they exist at all, are restricted 
to a bounded region of the positive real axis. 

5.3. Linearly polarised fields 

In the general case of a self-adjoint Hamiltonian H ( t )  acting in 2t' and periodic in 
time with period 27r/w, the time-evolution operator U ( t )  = U(t ,  0) can be represented 
in the Floquet form U ( t ) =  W(t)  exp(-iHF't), where HF' is defined by 
exp(-27riHF'/w) = U ( 2 7 r / w )  and the unitary operator W(t) is periodic in time with 
period 27r/w. It follows that 
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The usual procedure is to consider this equation on an enlarged Hilbert space (Sambe 
1973, Howland 1974, 1979; see also the pioneering work by Shirley (1965)). Thus 
let t = x o  and let p o  = -i&o on X o  = L2([0 ,  27r/w], dxo) with periodic boundary condi- 
tions (so that v ( p 0 )  = {nwln E Z}). Then on &'= X o  0 X, (5.5) leads to the equation 

(5.6) po  W(x0) - W(x0)po - W(xo)HF' = -H(xo) W(XO), 

W(xo)- l [po+H(xo)]  W(x0) = po+HF' =pool +loOH? 

or, since w(x0) is unitary on 2, 
(5.7) 

A similar formula for the corresponding unitary operators (so that no domain problems 
can arise) is given by Yajima (1982, equation (1.6)). It follows that fi = p o + H ( x o )  
and p o + H m  have the same spectrum. The transformation generated by W(xo)  leads 
to a very special reduction of fi with a trivial part p o  in Ho and HF' in the original 
Hilbert space. For circularly polarised fields W(xo)  = exp(-iwl3xo) and HF' are 
explicitly known and one can study HR directly. Since W(xo)  is dilatation invariant 
it is immaterial whether one studies the complex dilatation of HF' or of k. 

In the linearly polarised case no general expressions for W(xo)  and HF' seem to 
exist and calculations have been performed in terms of the explicitly known operator 
k (Manakov er a1 1976, 1978, Brodsky 1979). Although resonances are considered 
in these treatments, the complex dilatation method was not used. The complex 
dilatation theory for fi has recently been developed by Yajima (1982) and Yajima 
and Graffi (1983). It is interesting to note that the Kramers transformation (Kramers 
1950), which shifts the field dependence of the Hamiltonian to the potential, plays 
an important role in many treatments. It seems that Brodsky (1979) was the first to 
realise that this transformation leads to compactness properties. It was used again by 
Grossmann and Tip (1980) in a second quantised version, by Yajima (1982; see also 
Kitada and Yajima 1982) and in the present work (equation (2.1)). 

In all cases mentioned the idea behind its use is to obtain a relatively compact 
perturbation of some zero-order Hamiltonian with known spectrum. 

Yajima also considers the perturbation expansion in powers of the field strength 
p for the resonance eigenvalues A of the dilated Hamiltonian which originate from 
the eigenvalues A. < 0 of the field-free 'atomic' Hamiltonian. Under certain conditions 
on the potential he finds that for almost every w > O  the leading term in Im A for 
small p is proportional to p 2nn, where n o  is the smallest integer such that A. + now > 0 .  
Although not mentioned by Yajima the exceptions to the rule can occur if there is 
a second eigenvalue A h ,  A o < A 6  < O  and w = A 6  - A o .  If, for example, no = 2 and 
w = A ' - A  then Im A - p 2  instead of p4, provided the matrix elements of the field 
term in the 'atomic' Hamiltonian between the eigenstates associated with A. and A b ,  
respectively, are non-zero. (In terms of fi we are dealing with a degenerate eigenvalue 
whose degeneracy is lifted by the field term in k). Yajima's formalism of course also 
applies to the case of circularly polarised radiation fields. Since the field term in fi 
is different the positions of the resonances, although originating from the same 
eigenvalues, will in general deviate from those in the case of linear polarisation. 

5.4. Single field mode in second quantisation 

Many processes associated with atoms in radiation fields can be described equally 
well by means of a semiclassical approach (time-dependent external field) or in terms 
of a second quantised formalism. In the second case the field intensity enters the 
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formalism through the photon occupation number in the initial state (in the product 
Hilbert space for atom and field). A complex dilatation formalism for hydrogen atoms 
in a single field mode was developed by Grossmann and Tip (1980).  One basic 
difference with the semiclassical approach is that, due to the confining properties of 
the free-field Hamiltonian, the Hamiltonian is bounded from below. This is an 
important feature in connection with the extension of the dilatation formalism to 
many-electron atoms. The reason is that in the existing formulation (Balslev and 
Combes 1971, Simon 1972) use is made of the sectoriality properties of the various 
channel Hamiltonians. In the semiclassical approach both HF'(() (in the circularly 
polarised case) and A(l )  do not possess this property, whereas in the second quantised 
case the sectoriality property holds and the extension is straightforward. 
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Appendix 1 

According to (2 .6)  we have 

( A l . l )  

( A 1 . 2 )  

IlBflls A lIB*Bfll+ (2A )-lllfll. ( A 1 . 3 )  

Since, for f c  9, @Tf = exp(q)T exp(-q)@f = ( p  + ic)'@f, we have 
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(A1.7)  
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Appendix 2 

Let A( t )  be given by (1.2) and let CEC.  Then H o ( f ;  r )  = [ p  exp[-[]-A(t)12 with 
domain 9 ( T )  is closed and the corresponding evolution equation 

has the unique solution 

(A2.3) 

Proof. For 5 E I+ and f E go, exp[-iHo(a, 5) t l fe  Bo and, since e ~ p ( - i w l ~ t ) 9 ~  = $Bo, 
fio(5, t ) f  E 90. Let now 5 = 8 be real. In the following no generality is lost by taking 
8 = 0. Referring to S; 2 we have 

exp[-irlo(a It]  = M exp(-sof )M- '  = M exp(-ia2t) exp(-iTt) exp(iw13t)M-' (A2.4) 

with M = exp(iapz/w 1. From (A2.4) it is clear that exp[-ifi~(a)t] commutes with 
(1 + T)- '  and consequently e ~ p [ - # ~ ( a  ) t ]9 (T)  = 9 ( T ) .  Proceeding formally we have 
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f o r f € g 0  

11z3 exp[-iHo(a )tlfll= Ilexp[iHo(a )t]l3 exp[-ilfo(a )tlfll 

= I I M  exp(-iw13t) e x p ( i ~ t ) ~ - ' / ~ ~  exp(-iTt) e ~ p ( i w / ~ t ) ~ - ' f l l  

= I I M  exp(-iw13t)(13 - a p l / w )  exp(iu/3t)~-'fll 

= M [ / ~  - ( a / u ) ( p l  cos wt +pZ sin ot)M-'fll 
=Il{13+(a/u)[pl(l -coswt)-p2 sinwt]}fll<Co (A2.5) 

and this result becomes exact by reading (A2.5) in reverse order. We conclude that 
exp[-ilfo(a)t] maps 90 into itself. Now, for f € 9 I 0  and Im l E [0,7r/2] 

atfi0(l, t ) f  = -i exp(-iw13t)[u13 +Ro(a, l)] exp[-ilfo(a, l ) t l f  

= -i exp(-iw/3t)[p exp(-t) -a]' exp(iw13t)fio(l, t ) f  

= - f i o ( l ,  f ) f i O ( l ,  t)f. 

Since (A2.1) has a unique solution and both Uo(l ,  t )  (see A2.3) and Go((, t )  are 
bounded, it follows from the result U0(& t)f = CO([, t ) f f o r f E  go that U0(& t )  = CO([, t )  
since go is dense. 

It follows that 

exp[-ifio(a, t ) t ]  = e x p ( i ~ / ~ t ) ~ ~ ( l ,  r )  
= exp[-i(HO(i) + a  2)t] exp{i[2a exp(-l)/w 1 [ p l  sin wt +pZ(l -cos ut]) 

(A2.6) 

so that for Im I = 4 E [0,7r/2], Im z >$a' tan + (see 3.5). 

[z -&(a, l11-l 
a3 

= -i Io dt exp [i(z - G0(l) - a ')t] exp{i[2a exp(-l)/w] 

x [ p 1  sinot+p2(1-coswt)]}. (A2.7) 

Since the last exponential i s  periodic in t with period 27r/w we have 

[z -Ho(a, 
m 

= -i exp[i(z -fio(l) - a2~(27rn/w 13 jo2r'w dt exp[i(z - fio(5) - a 2)t] 
n =o 

x exp{i[2a exp(-l)/w][pl sin wt +p2( l  -cos ut)]} 

(A2.8) 

(A2.9) 
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(A2.10) 

From (A2.10) it is seen that F ( z ,  I) is a bounded-operator-valued analytic function 
of z E 43, except for the set of half-lines 

X = I;(a, I) = I;(a, 4 )  = { z  = a + A  exp(-2$) + ko, A E [0 ,  CO],  k E Z}. (A2.11) 

We note that I; = R for 5 = real and that F ( z ,  [)-' and F*(z ,  (1- do not have a 
bounded inverse for z E I;. Since llVo([, t)ll is bounded by exp(+a2t tan 4 )  it follows that 

(A2.12) 

is a bounded-operator-valued analytic function of z .  It follows that for [ E Z +  the 
right-hand side of (A2.8) is a bounded-operator-valued analytic function of z E I;' = 
C/I;. Since for such 6, X' is a connected region in 43 it follows that I;'c p(Ho(a ,  I)). 
Since ( [ z  -Ro(a, [)I-')* = iG*(z, ( ) F * ( z ,  5)  and F*(z ,  [I-' does not have a bounded 
inverse for z E I; it follows that a(Ho(a,  5 ) )  = I; and p(Ho(u ,  I)) = X' for 6 E I , .  Thus 

Theorem. Let 5 E I,. Then a(Ho(a,  [)) = X(u ,  4) .  
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